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Precipitation Nowcasting

To predict the future rainfall intensity in a local region over a
relatively short period of time based on radar echo maps
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Input: consecutive frames of radar echo maps
Output: predicted future radar echo maps

Two Approaches

 Optical flow based models: as represented by the Real-

time Optical flow by Variational methods for Echoes of
Radar (ROVER) algorithm

* Deep learning models: sequence-to-sequence models
with novel RNN (recurrent neural network) components

Motivations

It is not a trivial task for scientists without deep learning
experience to configure and run deep learning models.

e Optical flow based methods deliver reasonable
performance (but worse than deep learning methods)
without the need of model training

e The performance of optical flow based methods are highly
sensitive to model parameters which require a lot of
empirical knowledge to optimize

EasyRain: a platform with a user-friendly web interface to
help users without domain knowledge (in deep learning
and/or meteorology) to efficiently build deep learning and
optical flow based models, and to compare their performance
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Deep Learning Models Supported

ConvLSTM & ConvGRU: extending RNN (e.g, LSTM,
GRU) to have convolutional structures in both the
input-to-state and state-to-state transitions so as to
accommodate radar echo maps as model inputs
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TrajGRU: location-variant convolutional RNN component
where the recurrent connections between consecutive
frames are dynamically determined

3D CNN: faster to train than RNN models; encoding
temporal information as depth of the input; convolution
and pooling operations are performed spatio-temporally

Web Interface
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GUI for Training Frame-by-Frame Comparison

Qualitative: EasyRain allows users to view a sequence of
radar echo maps (or simply, frames) as a video; the
predicted frames of different models can be juxtaposed
as videos along with the video of ground-truth frames

Qualitative: each predicted frame is converted into a
0/1 matrix, and evaluated against that computed from
the ground-truth frame; calculating well-established
guantitative evaluation metrics: Critical Index Score CSJ,
Probability of Detection POD, and Heidke Skill Score HSS

Inference Result Comparison

Inference Result Comparison
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Result Comparison of Two Models
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