# EasyRain: A User-Friendly Platform for Comparing Precipitation Nowcasting Models

Ji Cheng, Guimu Guo, Da Yan, Xiaotian Hao, Wilfred Ng Contact: jchengac@connect.ust.hk, guimuguo@uab.edu

## **Precipitation Nowcasting**

To predict the future **rainfall intensity** in a **local region** over a relatively **short period** of time based on **radar echo maps** 

Input Radar Echo Maps

**Predicted Radar Echo Maps** 









Back End

**Front End** 

**Input:** consecutive frames of radar echo maps **Output:** predicted future radar echo maps

### **Two Approaches**

 $t_2$ 

- **Optical flow based models:** as represented by the Realtime Optical flow by Variational methods for Echoes of Radar (ROVER) algorithm
- **Deep learning models:** sequence-to-sequence models with novel RNN (recurrent neural network) components

# **Motivations**

- It is not a trivial task for scientists without deep learning experience to configure and run deep learning models.
- Optical flow based methods deliver reasonable performance (but worse than deep learning methods) without the need of model training
- The performance of optical flow based methods are highly sensitive to model parameters which require a lot of empirical knowledge to optimize

**EasyRain:** a platform with a user-friendly web interface to help users without domain knowledge (in deep learning and/or meteorology) to efficiently build deep learning and optical flow based models, and to compare their performance

**ConvLSTM & ConvGRU:** extending RNN (e.g, LSTM, GRU) to have convolutional structures in both the input-to-state and state-to-state transitions so as to accommodate radar echo maps as model inputs



TrajGRU: location-variant convolutional RNN component where the recurrent connections between consecutive frames are dynamically determined **3D CNN:** faster to train than RNN models; encoding temporal information as depth of the input; convolution and pooling operations are performed spatio-temporally

# **The EasyRain Framework**



#### **Deep Learning Models Supported**



#### **GUI for Training**

**Qualitative:** EasyRain allows users to view a sequence of radar echo maps (or simply, frames) as a video; the predicted frames of different models can be juxtaposed as videos along with the video of ground-truth frames

Qualitative: each predicted frame is converted into a 0/1 matrix, and evaluated against that computed from the ground-truth frame; calculating well-established quantitative evaluation metrics: Critical Index Score CSI, Probability of Detection *POD*, and Heidke Skill Score *HSS* 

| Pret                | trained Mod                         | del Demonstratior | n Model Training | Inference Resu   | It Comparison |
|---------------------|-------------------------------------|-------------------|------------------|------------------|---------------|
| Inf                 | eren                                | ce Resi           | ult Comp         | arison           |               |
| Мо                  | del 1                               |                   |                  |                  |               |
| Uplo<br>Choo<br>ROV | oad Test Data<br>ose Model T<br>'ER | a File<br>iype -  |                  | Input Frames     |               |
| Sigma               |                                     | Rho               | Alpha            | 2013/10/06 10:30 | 4<br>         |
| 9                   |                                     | 1.5               | 2000             | Fram             | T. T.         |
| Tr                  |                                     | Lf                | Lc               | cted             |               |
| 6                   |                                     | 1                 | 7                | Ledi             | () [] []      |
| Per                 | forman                              | ce Scores         | :                | 8013/10/04 10:30 | *             |
| r                   | CSI                                 | POD               | HSS              | Truth            | 1             |
| 0.5                 | 0.467079                            | 0.607997          | 0.591262         | puno             |               |
| 2                   | 0.410161                            | 0.574013          | 0.546265         | 5                |               |
| 10                  | 0.218364                            | 0.313899          | 0.334188         | •                | 49 Li i       |
|                     |                                     |                   |                  |                  |               |

**Result Comparison of Two Models** 

#### Web Interface

**Frame-by-Frame Comparison** 

#### Model 2

| test_ | _data.zip      |          |          | ames     |                        |
|-------|----------------|----------|----------|----------|------------------------|
| Choo  | ose Model Type | •        |          | Input Fr |                        |
| Conv  | vGRU           |          |          |          |                        |
| Uplo  | ad Model File  |          |          | Frames   |                        |
| trajg | ru_model1.pkl  |          | cted     |          |                        |
|       |                |          | Confirm  | Predi    | 0:00/0:04 • • <b>C</b> |
| r     | CSI            | POD      | HSS      | d Truth  |                        |
| 0.5   | 0.557363       | 0.765418 | 0.677075 | roun     | 617 8                  |
| 2     | 0.480844       | 0.791577 | 0.617426 | Ō        | 0:00/0:04              |
| 10    | 0.292566       | 0.646727 | 0.432292 |          |                        |
|       |                |          |          |          |                        |