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Abstract—Recovering low-rank matrices from incomplete ob-
servations is a fundamental problem with many applications,
especially in recommender systems. In theory, under certain
conditions, this problem can be solved by convex or non-convex
relaxation. However, most existing provable algorithms suffer
from superlinear per-iteration cost, which severely limits their
applicability to large-scale problems. In this paper, we propose
a novel fuzzy double trace norm minimization (DTNM) method
for recommender systems. We first present a tractable DTNM
model, in which we can integrate both the user social relationship
and the user reputation information using a fuzzy weighting way
and coupling fuzzy matrix factorization. In essence, our model
is a Schatten-1/2 quasi-norm minimization problem. Moreover,
we develop two efficient augmented Lagrangian algorithms to
solve the proposed problems, and prove the convergence of our
algorithms. Finally, we investigate the empirical recoverability
properties of our model and its advantage over classical trace
norm. Extensive experimental results on both synthetic and real-
world data sets verified both the efficiency and effectiveness of
our method compared with the state-of-the-art algorithms.

Index Terms—Collaborative filtering; double trace norm; fuzzy
weighting; contextual information; matrix completion

I. INTRODUCTION

N recent years, many trace norm (also known as the

nuclear norm) or Schatten-p (0 < p < 1) quasi-norm
minimization methods have been employed in many machine
learning and data mining applications, such as low-rank matrix
completion (LRMC), matrix classification, multi-task learning
and dimensionality reduction [1]. For solving such convex
or non-convex optimization problems, those algorithms do
not require the rank to be specified and have to be solved
iteratively. Naturally, the singular value decomposition (SVD)
tends to play a critical computational role in the design of
various solvers, e.g., APG [2] and IRucLq [3]. All those
algorithms involve SVD and apply a soft-thresholding operator
on singular values in each iteration, and thus they suffer
from high computational cost O(mn?) of SVDs [4]-[6]. In
particular, when their iterations need to pass through a region
where the spectrum is dense, they can become prohibitively
expensive to run when the size of the associated matrices
grows beyond a few thousand [7], e.g., the MovieLens data
sets. Only those singular values that exceed a threshold, and
associated singular vectors, contribute to the soft-thresholding
operator. Thus, a commonly used strategy is to compute only
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partial SVD instead of the full one, for example, APG [2]
uses the PROPACK package [8]. However, it can compute
only a given number of largest singular values, and the soft-
thresholding operator requires the principal singular values to
be greater than a given threshold [7], [9].

Matrix factorization is arguably the most widely used
method for real-world problems including the Netflix Prize,
due to its high accuracy, scalability and flexibility to incorpo-
rate side-information [10], [11]. If the rank of given matrices is
known, a class of matrix factorization algorithms [5], [12]-[14]
cast the LRMC problem as a fixed-rank matrix factorization
problem. Wen et al. [14] proposed a successive over-relaxation
algorithm to solve such a problem. In [5] and [13], two
improved algorithms were proposed to optimize such problems
on Grassmannian manifolds, and improve its convergence us-
ing conjugate gradients rather than standard gradient descent.
Moreover, Keshavan et al. [12] proved that exact recovery can
be obtained with high probability by solving a non-convex
optimization problem. In all of the models mentioned above,
the correct rank needs to be known a priori. Unfortunately, the
determination of the reduced rank is also an open problem,
especially for the noisy matrix estimation.

Recommender systems, which attempt to tackle the informa-
tion overload problem by suggesting to users the information
that is potentially of interests, attract more and more attention
in recent years [15]-[17]. However, traditional recommender
systems assume that users are independent and identically
distributed (i.i.d.), and purely mine the user-item rating matrix
for recommendations. Therefore, they give somewhat unre-
alistic output. But in real life, for example, when we ask
our friends for recommendations of smart phones or movies,
we are actually utilizing the social contextual information
for recommendations. Social relations provide an independent
source of information about users beyond rating information,
and can potentially be used to improve the performance of
traditional recommender systems [11], [16], [18]-[20].

In this paper, we focus on three major challenges faced
by existing recommender systems, namely the computational
efficiency, the robustness of the rank parameter, and the
incorporation of the social contextual information. In order
to address such challenges, we propose a novel fuzzy double
trace norm minimization (DTNM) method. We summarize
the main contributions of this work as follows. 1) We first
formulate the LRMC problem as a tractable DTNM prob-
lem, which significantly reduces the computational cost per-
iteration from O(mn?) to O(mnd) (d<<m,n in general). 2)
In fact, our model is a Schatten-1/2 quasi-norm minimization
problem, and can be extended to incorporate the social con-
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textual information such as the user social relationship and
user reputation information by using a fuzzy weighting way
and coupling fuzzy matrix factorization. 3) We develop two
efficient algorithms based on the alternating direction methods
of multipliers (ADMM) to solve our challenging non-convex
non-smooth problems. 4) Finally, we provide convergence
guarantees for our algorithms, and analyze the superiority of
our double trace norm over the popular trace norm.

The rest of the paper is organized as follows. We review
some related work in Section II. In Section III, we propose
a DTNM model and then incorporate both the user social
relationship and user reputation information into it. We de-
velop two efficient ADMM algorithms in Section IV. We give
theoretical analysis in Section V. We report empirical results
in Section VI, and conclude this paper in Section VII.

II. BACKGROUND AND RELATED WORK

The Schatten p-norm (0 <p<oo) of a matrix X € R™*" ig
defined as
min(m,n)
IXIls, £ > (X))

i=1

where o;(X) denotes the i-th singular value of X. When p=1,
the Schatten 1-norm is the well-known trace norm, || X||.. As
non-convex surrogate functions of the matrix rank [3], [21], the
Schatten-p quasi-norm with 0 <p <1 is a better approximation
than the trace norm, and so is the /,-quasi-norm a better
approximation than the ¢;-norm [22], [23].

A. Schatten Norm Minimization

Given a matrix, some of its entries may not be observed due
to problems in the acquisition process, e.g., loss of information
or high cost of experiments to obtain complete data [24]. To
recover a low-rank matrix from a small number of entries, we
solve the general Schatten p-norm minimization problem

min
X eRm Xn

HX”g’p? s.t., PQ(X) :PQ(D) ey
or the Schatten p-norm regularized least squares problem

min
XGR’"L Xn

XI5, + 3IPa(X) - PaD)F @
where in general p €0, 1], A>0 is a regularization parameter,
and Pq (D) is defined as the projection of D onto the observed
entries Q:={(4, j)|D;; is observed}: Po(D),;; =D;; if (i,5) €
2 and Pq(D);; =0 otherwise.

Many convex trace norm minimization (TNM) algorithms
(e.g., APG [2]), reweighted trace norm (e.g., [25]) or Schatten
quasi-norm minimization (SNM) algorithms (e.g., IRucLq [3],
[21], [26]) have been proposed to solve the problems (1) and
(2) or their special cases, e.g., p=1. However, they have to be
solved iteratively and involve SVD of very large matrices in
each iteration. Therefore, they suffer from high computational
cost and are even not applicable for large-scale problems.

B. Matrix Factorization Formulations

Alternatively, fixed-rank matrix factorization for LRMC has
received a significant amount of attention [5], [12]-[14], [27].
For example, Wen et al. [14] proposed a successive over-
relaxation iteration scheme to alternatively solve the following
least-squares problem,

[UVT=X|%, s, Pa(X)=Pa(D).  (3)

min
UGR"'LX(!,VGR7LX d7X

The matrix factorization problem can also be converted
into some Riemannian manifold optimization problems, such
as [5], [12], [13]. However, in all the algorithms we need
to know the exact rank, which is usually difficult to obtain,
especially for noisy matrices. Thus, for noisy matrix comple-
tion, the importance of regularization in such problems is well
known to practitioners. For instance, one important compo-
nent of many algorithms competing for the Netflix challenge
involves minimizing the following objective function [11],

LA 1
min S[Pa(UVT) = Pa(D)I3 + 5 (IU1F + IVI3). )

Some similar bilinear spectral regularized matrix factorization
(SRMF) formulations are used in [5], [12], [13]. Srebro et
al. [28] and Mazumder et al. [4] pointed out the equivalence
relation between the bilinear spectral regularization and the
trace norm as follows.

Lemma 1. Given a matrix X € R™*™ with rank(X) < d,
the following equalities hold:

. 1
IX|le=_ min  S(U[E+IV]F)=
X T 2

= min_[U[[r[[V] .
X=UVT

=YUmxd Vxa

III. DOUBLE TRACE NORM MINIMIZATION

In this section, we propose a novel double trace norm
minimization model for LRMC problems, which is a tractable
Schatten-1/2 quasi-norm minimization problem. Moreover, we
present a generic coupled fuzzy matrix factorization model for
fuzzy recommender systems, in which we incorporate both the
user social relationship and user reputation information.

A. Double Trace Norm

Let d be an upper bound on the rank of a low-rank matrix
X, ie., d > r =rank(X), then X can be decomposed into
a product of two much smaller factor matrices, U € R™*¢
and V e R"*4 gsuch that X =UV7T. In particular, Keshavan
et al. [12] and Wen et al. [14] presented several matrix rank
estimation strategies to compute a good value r’ for the rank
of the involved matrix. Thus, we only set a relatively large
integer d such that d > 7/, e.g., d = r’ + 1. Inspired by the
equivalence relation between the trace norm and the bilinear
spectral regularization shown in Lemma 1, our double trace
norm is naturally defined as follows [29].

Definition 1. For any X e R™*"™ with rank(X) <d, it can be
factorized into U e R™*? and V € R™*? such that X =UVT.
Then the double trace norm of X is defined as

2
U1« + [V«
5 :

1X [ 2=

min
X=UVT
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In fact, the double trace norm is not a real norm, because
it is non-convex and does not satisfy the triangle inequality of
a norm. Similar to the definitions in [6], [30], which cannot
be directly used in real-world applications, the double trace
norm is the Schatten-1/2 quasi-norm, as stated in the following
theorem [29] (whose proof is also different from that in [6]).

Theorem 1. The double trace norm || ||.. is the Schatten-1/2
quasi-norm.

It is easy to verify that the double trace norm possesses the
following properties [30].

Property 1. The double trace norm satisfies the following
properties:
1) | X|lsx = O, with equality iff X = 0;
2) || X ||4s is unitarily invariant, i.e., | X||.cx = || PX QT ||+,
where both P € R"™*™ and @ € R™*"™ are orthonormal
matrices.

Property 2. For any matrix X € R™*"™ with rank(X) < d,
the following equalities hold:

. 1 2 .

1 X e = _min ’&d4(|\Ull*+IIVll*) = in [TVl

The higher efficiency of the ¢ /3-quasi-norm than the /;-
norm for sparse vector recovery was demonstrated in signal
and image recovery applications [31], [32]. By realizing
the intimate relationship between the ¢,-quasi-norm and the
Schatten-p quasi-norm, the Schatten-1/2 quasi-norm generally
obtains better empirical performance than the trace norm [25].
Some work [3], [26], [31] has shown that p=1/2 is the best
choice. We apply the double trace norm as a surrogate of the
rank function, and propose the following formulation,

min | X%, st Pa(X) = Pa(D) %)
and its Lagrangian version

A
edlin X7+ SIPa(X) = Pa(D)lF ©

We call (6) as a double trace norm minimization (DTNM)
model for social recommendation. To solve (6), we only need
to perform SVDs on two much smaller factor matrices U €
R™*d and V € R"*4 in each iteration. Hence, our DTNM
method is very efficient. DTNM is also robust to the given
rank d, which will be verified by experiments in Section VI.

B. Fuzzy Weighted Model

In fact, the ratio of observed elements in real-world recom-
mendation system data is very small, e.g., 1.31% in Movie-
Lens10M. Thus, there has been an upsurge of interest in uti-
lizing some side-information about users/items to compensate
for the insufficiency of rating information. For example, user
reputation plays an important role in recommendation and
has attracted various real-world applications [15], [16]. Seno
and Lukas [33] found that suggestions from people with high
reputations positively affect a consumer’s adoption of a brand.
Massa [34] found that ratings from users with high reputations
are more likely to be trustworthy.

There are many algorithms to calculate the reputations of
nodes in social networks according to their connections, and
we adopt one of the most popular algorithms, PageRank [35],
to compute the user reputation scores in this network. We first
perform PageRank to rank users by exploiting the perspective
of social relations similar to [17]. We assume that r; € [1,m]
is the reputation ranking of the ¢-th user w;, where r; = 1
denotes that u; has the highest reputation in the whole social
network. Then we define the fuzzy user reputation score w;
as a function A of user reputation ranking r; as follows:

1
L+ log(rs)/log*(m)

w; = h(TZ‘) (7)
where the fuzzy reputation score w; € [0, 1] and the function h
is a decreasing function of r;, i.e., top-ranked users have high
reputation scores similar to leverage scores in [17], [36].

By incorporating the user reputation into (6), we obtain the
following fuzzy weighted DTNM problem

min

A
X2+ 2Ty @ (X — D)|? 8
X:rank(X)<d ” H T 2 H 1 ®( )”F 3)

where © denotes the Hadamard product, ie., [A® B];; =
A;jB;j;, and Ty e R™*™ is formally defined as

() = {\/uT if (i,7) € Q,

0, otherwise.

It is clear that (6) can be viewed as a special case of (8),
where w; =1 for all ©=1,...,m. That is, a large value of
the reputation score w;, indicating high reputation of the user,
will force X;; to tightly fit the rating D;;, while D;; will be
loosely approximated by X;; when w; is small.

C. Coupled Fuzzy Matrix Factorization

Recent research on analyzing social networks has demon-
strated that relational patterns of homophily can be exploited
to improve predictive models of both link structure and behav-
ior [37], [38]. That is, users with strong ties are more likely
to share similar tastes than those with weak ties, and treating
all social relations equally is likely to lead to degradation
in recommendation performance. Thus, those observations
suggest that we should consider heterogeneous strengths when
exploiting user social relationship for recommendation.

Let C ={c;;} be the social network matrix. For a pair of
users, u; and uy, the weight ¢;;, € (0,1] is the social relation
strength associated with a social link from u; to ug, and c;, =
0, otherwise. In the physical world, c;; can be interpreted as
how much the ¢-th user wu; trusts the k-th user u; in a social
network. Note that C'€ R™*™ is an asymmetric fuzzy matrix,
since in a trust-based social network, the user u,; trusting the
user ug does not necessarily indicate that uy trusts u;.

From social correlation theories, the user preferences of two
socially connected users are correlated. Thus, we propose the
following formulation to capture the social relationships:

min

Z iiQ 7 T: 7 — 2 9
Z:rank(Z)<d H H + 2” 2 ®( C)”F ( )
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Algorithm 1 Solving DTNM problem (6) via ADMM
Input: Po(D), d, A and e.
Initialize: Uy=U}=0, V=
1: while not converged do
2:  Update Uy and Vi41 by (14) and (15).
3. Update U;_ , and V[, by (17) and (18).
4:  Update Xy by (20).
5:  Update the multipliers by
%ﬂ1—521+uk(%+1—(]é+1)’ )7@11:}22+ﬂk(vk+1_vk/+1)7
Y =Y+ (X1 — o1 i)
Update jig41 by pikt1 = ppik.
7. Check the convergence condltlon
max{||Us Ul [IF, | Vierr =V lI7, | Xoen—UhonaViy I} <e.
8: end while
Output: Xy 1, Ugyq and Vi,

Vi=0, Yi=0, and j1o=10"4,

where >0 is a regularization parameter, and T, € R™*™ is
an indicator matrix whose (¢, k)-th entry is equal to 1 if user
w; trusts user ug and is equal to O otherwise.

In the above, we introduce our solutions to capture the
user reputation and the observed social network relationships
mathematically. With these solutions, we propose a generic
coupled fuzzy matrix factorization model as follows:

min
rank(X)<d
“rank(Z)<d

A
1/2 1/2
IX 122+ 12122+ 51T1 © (X =D)II7

gl
+ 51T © (Z2=0)]-

Our model (10) is called a double trace norm minimization
(DTNMC) method with coupled fuzzy matrix factorization.
In the following, we will propose two efficient augmented
Lagrangian algorithms to solve (6), (8) and (10).

IV. OPTIMIZATION ALGORITHMS

In this section, we develop two efficient algorithms based
on the alternating direction method of multipliers (ADMM)
to solve (6), (8) and (10). The ADMM was introduced for
optimization in the 1970’s, and its origins can be traced back
to techniques for solving partial differential equations in the
1950’s. It has received renewed interests due to the fact that
the ADMM is efficient to tackle large scale problems and solve
the problems with multiple non-smooth terms in the objective
function [39], [40]. Recently, it has been shown in the literature
that the ADMM is very efficient for convex or non-convex
optimization problems from many real-world applications.

A. DTNM Algorithm

According to the definition of our double trace norm and
the constraint in (6), we can write X as the product of two
considerably smaller matrices U and V, i.e., X =U VT, Due
to the interdependent matrix trace norm terms, our model (6)
is difficult to solve. The key motivation of simplifying this
original problem is how to split both interdependent terms
such that they can be solved independently. Thus, we introduce

4

two additional matrices U’ and V' as auxiliary variables, and
obtain the following equivalent formulation,

(10" +1V7)1) + Pa(D)|

Y

Z X)—
o B x 2 31Pa(x)

st, X=0vT, u=U",v=V.

The augmented Lagrangian function of (11) is

1 A
Ly = U1 +V' 1)+ 5 1Pa(X) =Pa(D)lI
+ (YL U-UY+ (Y2 V-V (Y3 xX-UVT)
7
+5(IU=U 7 +IIV =V [F+IIX -UVT]E)
where Y (i=1,2, 3) are the matrices of Lagrange multipliers,
and ¢ >0 is a penalty parameter.
1) Update of U1 and Vi41: By fixing the other variables
at their latest values, removing and adding some proper terms

that do not depend on U and V, the optimization problems
with respect to U and V' are formulated as follows:

U = Ui + Y3 el ® + 1 X — UVE + Y2 el B, (12)
IV = Vi + Y2/l T + 1Xk = Upa VT + Y3 /]| 3. (13)

Since both (12) and (13) are smooth convex optimization
problems, their closed-form solutions are given by

Upir = [(Xp+ Y3 /1) Vi + UL =Yy ] (Vi Vie+1) ™
(X + Y3 ) Upepr V=Y ) (U U g + 1)

2) Update of U, and V;;_,: By keeping all other vari-
ables fixed, Uj,_, ; is updated by solving the following problem:
U + Y, /el (16)

To solve (16), the spectral soft-thresholding operator [1], [9]
is considered as a shrinkage operation on the singular values,
and is defined as follows:

Uj 1= S1/oun) (Q1) :=Udiag(max{g —0.5;", 0)) V7,

where Q1 = Uk+1 +Yk1/ g, max{-,-} should be understood
element-wise, U, V, and & 0= (01,02, ...,04)T are obtained
by SVD of @4, i.e., @1 —Udlag( )VT Snmlarly, the update
rule of V[, is given by

Viier = St/ (Virr + Y32 i) -

3) Update of Xy41: By fixing all other variables, the
optimal Xy is the solution to the following problem:

L4

Vit = (15)

10 s + g | U1 =

a7

(18)

A Mk Yv‘3
3P0 ~Pa(D) [+ G IX ~ VWil + =l (19)

Since (19) is a smooth convex optimization problem, it is easy
to show that the optimal solution to (19) is

Xpt1 = Pal(AD + U1 Vil = Yi2) /(A + )] 20)
+Pq (U Vil = Y5 /)
where 735% is the complementary operator of Pq, ie.,

Pg (D) =0if (i,5) €€, and Pg(D);; = D;; otherwise.
Based on the description above, we develop an efficient

ADMM algorithm for solving the double trace norm minimiza-

tion (DTNM) problem (6), as outlined in Algorithm 1. A fixed
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1 is commonly used. But there are some schemes of varying
the penalty parameter to achieve better convergence [39], [41].
This algorithm can also be accelerated by adaptively changing
W g1 = ppg, where p € (1.0,1.1] in general and pg is a
small constant. Moreover, our algorithm can be easily applied
to solve the fuzzy weighted DTNM problem (8).

B. DTNMC Algorithm

To efficiently solve our unified model (10), we also intro-
duce three auxiliary variables U’, V'’ and W', and obtain the
following equivalent formulation:

- 2| U+ [V s+ W]
min
2
Y
+ §||T2 ® (Z-0)|F,

st, X=UVT, Zz=uwT u=U0"v=V' W=W".

A
+§||T1 ®(X-D)|%
(21)

1) Updating Ugi1, Vi1 and Wii1: The optimization
problems w.r.t. U, V and W are formulated as follows:

U= Uy + Y3 /gl + | X5 = UV

(22)
+ Y3 e + 126 — UW+ Y e %

V=V + Y2 ull% + |1 X — Upr VE + YV i3, (23)

W WY [l | 2 — Uk s W+ Y 2. (24)

Since (22), (23) and (24) are all smooth convex problems, their
closed-form solutions are given by

Us1=[(Xp+ Y/ 1) Vit (Ze+ Y5 [ i) W

25)
+U, =Y /) VEVe+WEW+1) 71, (
Virr= Vi =Y/ e+ (X + Y5 /i) T Upta] 26)
(UE U +1) 7,
Wit1= Wi =Y3 i+ (Zi+YP /1)  Upet] 27

(Ug+1Uk+1 +I)_1~

2) Updating Uy, Vi, | and W} ,: Uy, is updated by
solving the following problem,
’ Kk ’ 1 2
IO+ S Uketr = U" + Y/ e (28)

Similar to (16), the optimal solution to (28) is given by

Uts1 = Sty (Uner + Y5 /) - (29)
Similarly, V}/, , and W}, are updated by
Vier = Suyep) (Vi + Y2 1) (30)

Wit = S1/zu) Wi + Y7 /i) -
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Algorithm 2 Solving DTNMC problem (10) via ADMM
Input: Pq(D), d, A, v and e.
Initialize: Uy=U,=Y]} =0, Vo=V] =Y =0, Wo=W/}=
Yy =0, and po=10""%.
1: while not converged do

2:  Update Ujy1, V41 and Wiy by (25), (26) and (27).
3. Compute Uy, V|, and Wy, by (29) and (30).
4:  Update X1 and Zi4; by (31) and (32).
5. Update Y;',, (i=1,...,5) by
V=Y A (Uen=Ul ), 20=Y2 4+ (Via = Vi),
Y3 =Y (Wen=W), VA=Y 4 (Xen— Ui )

Y2 = Y0 4 (G = Ut WLy ).
6:  Update pipy1 by pp41 = ppik.
7:  Check the convergence condition
max{[| X1 — UtV 175 1 Zen =Wl I} <e
8: end while
Output: X1, Zi+1, Ugt1, Vier1 and Wi q.

3) Updating X1 and Zy,,: The optimal X and Zj4
are the solutions to the following optimization problems:

min ATy © (X =D)|[ %+l X = Up 1 Vil + 5 /el
min |7y © (Z=C)|[f+usll 2= Uk a Wi + Y7 /il

Since the above problems are smooth convex problems, it is
easy to show that the optimal solution Xj_; is given by

Xip1 = WOOAWOD + U Vi, — Vi)
+ Py (Ur+1Vider — Yo' /)

where W is the Hadamard inverse, i.e., W, = (M) 3 )~
if (T1)i; #0, and W;; =0 otherwise, and W;; = (T1)3;.
Similar to (31), the optimal solution Zj_; is given by
YC + ppUpa Wi | — Y;f)
Y+ bk (32)
+(J = To) © (Up a1 Wiy = Y /pur)
where J is the m xm matrix with all entries equal to 1.
Based on the description above, we develop an efficient
ADMM algorithm for solving our DTNMC problem (10), as
outlined in Algorithm 2.

€1y

Zik1 =T O (

V. THEORETICAL ANALYSIS

In this section, we provide the recovery guarantees of our
double trace norm minimization model and the convergence
analysis and complexity analysis for our algorithms.

A. Convergence Analysis

For a proper and lower semi-continuous (PLSC) function,
denotes as h : R? — (—o0, +00], the domain of % is defined
by domh :={x € RP : h(zx) < +oo}. Next, we define the
critical points of a PLSC function.

Definition 2 ( [42]). Let h be a PLSC function.

o The Frechet sub-differential of h at x is defined as

hy)—h(z)—(u,y—=)
ly—z|2

Oh(z)={u€RP?: lim inf

y#T Y=L

>0},
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and Oh(z) = 0 if z ¢ dom h.
o The limiting sub-differential of h at x is defined as

Oh(z) = {u € R™: z* — 2, h(z") — h(z)
and u” €§h(wk)—>u as k—o0}.
e x is a critical (or stationary) point of h if 0€ Oh(x).

Note that our problems (6), (8) and (10) are all challenging
non-convex and non-smooth problems. Unlike the non-convex
and smooth case [43], the local convergence of our ADMM
algorithm (i.e., Algorithm 1) is guaranteed as follows.

Theorem 2. Let {(Ug, Vi, UL, Vi, Xk, {Y{})} be a sequence
generated by Algorithm 1, and if the sequence {Y;>} is
bounded, then the following holds:
1) {(Uk, Vi)}, {(U},,V)} and {X}} are all Cauchy se-
quences.
2) If limy oo || Yy, =Y} |lp=0 (i=1,2,3), then the accu-
mulation point of the sequence {(Uy, Vi, Xy)} satisfies
the KKT conditions for Problem (6).

The proof of the theorem can be found in the Supplementary
Material. Theorem 2 shows that under mild conditions each se-
quence generated by Algorithm 1 converges to a critical point
(or stationary point). Similar to Algorithm 1, the convergence
of Algorithm 2 can also be guaranteed.

B. Recovery Guarantees

According to Definition 1, the double trace norm term in
(6), (8) and (10) is the square root of || X||.«. To obtain our
conclusion, we first give the following lemma [44].

Lemma 2. ||X||p < || X]|s < \/rank(X)|X]|r.

Theorem 3. For any X € R™*"™ and rank(X) = r, the
following inequalities hold:

X < 1 X s <l Xl

The proof of Theorem 3 is provided in the Supplementary
Material. According to Theorem 3, it is clear that our double
trace norm penalty is much tighter than both the bilinear
spectral regularization term in (4) and trace norm penalty in
(1) and (2), similar to the trace norm vs. the Frobenius norm.

We further analyze the superiority of our double trace norm
over the traditional trace norm, and establish the recovery
guarantee for the following general model, which is based on
the properties of the general linear operator A:R™*™ — R,
such as the matrix restricted isometry property (RIP):

min [|X[4%, st JAUVT) —blla<e (33)

where beR! is linear observations and e >0 is a noise level.

Definition 3. The matrix RIP constant 6,.(A) of the linear
operator A is the smallest value such that
(1= & (ADIXIIE < [AX)IE < (1+6,-(A)IIXIF

holds for all matrices with rank(X) < r.

[45]-[48] provided the matrix RIP-based condition for
robust and accurate recovery of low-rank matrices from noisy

6

TABLE 1
COMPARISON OF RECOVERY THRESHOLDS 824 2.
Rank 5 10 15 20
Trace norm model 0.4752 0.4648 0.4610 0.4590
Double trace norm model 0.5212 0.4886 0.4771 0.4711

measurements. Similarly, we also provide the theoretical guar-
antee for our double trace norm model (33).

Theorem 4. Assume X, € R™*™ is a true matrix with
rank(Xo) <r and the corrupted measurements A(Xo)+e=D,
where |||z <e. Let (U*,V*) be a solution to Problem (33)
and X*=U*(V*)T. If

2(v2 - 1)(t/r)'"
2(vV2 = 1)(t/r)15 + 1
holds for some integers t > r, then

1Xo — X*||s,, < C1l| X0 — X" s, 5 + Dirt e,
1Xo — X*||r < Cot ™3| X0 — XI5, ,, + Dae

bop < (34)

where Xé” is a matrix obtained by keeping the r largest
singular values in the SVD of Xy, ||| s,,, is the Schatten-1/2
norm, and Cy,Cy, D1, Dy depend only on 0o and t/r.

Proof. We use the inequality y2; > (14024 ) /(1-02;) to state our
results in terms of do;, Where ~yo; is the asymmetric RIP con-
stant defined in [22]. Our result in Theorem 4 can be obtained
by combining Proposition 2 in [48] and Theorem 1. O

Remark 1. When e=0 and rank(Xo) <r, Theorem 4 implies
that Xg is a unique solution to the noiseless formulation (33).
Recall that 6o, < 1 is a sufficient condition for the success
of the rank minimization model [47]. Then for the given r,
the matrix RIP condition 2,120 < 1 is sufficient for robust
recovery of matrices with rank at most r by using our model
(33). Substituting t with r+1 in (34), we further analyze the
recovery threshold 6o, o in Theorem 4. Table I shows that the
required threshold 65,5 for our model (33) is less restrictive
than that for the popular trace norm model as in [1], [44].

C. Error Bound on Matrix Completion

Although the LRMC problem is a practically important
application of Problem (33), the projection operator Pq does
not satisfy the standard RIP condition in general [1], [49].
Therefore, we need to provide the recovery guarantee for per-
formance of our algorithm for solving the LRMC problem (6).
Without loss of generality, assume that the observed matrix
D € R™*™ can be decomposed as a true matrix X, of rank
r<d and a random Gaussian noise F, i.e., D=Xy+FE.

Theorem 5. Let ((7 , 17) be a critical point of Problem (6) with
given d, and m > n. Then there exists an absolute constant
C, such that with probability at least 1 — 2 exp(—m),

LXO—WTHF<||EF+635(mdlog<m>)1/4+ Vi
Jmn  —\/mn 1] 20:0M/19]

_ Pa(D-UVNV|r

where 5:maXi7j |D17]| and C4—m
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The proof of Theorem 5 is very similar to that of Theorem
8 [30] and is thus omitted. Theorem 5 shows that when the
samples size |2| > mdlog(m), the second and third terms
diminish, and the recovery error is essentially bounded by
the “average” magnitude of entries of E as in [30]. That
is, to perfectly recover a rank-r matrix of size m X n, only
O(mdlog(m)) observed entries are required by our double
trace norm minimization model (6), which is significantly
lower than O(mrlog®(m)) in standard matrix completion
theories [12], [44], [50].

Remark 2. Since the Schatten quasi-norm minimization prob-
lem is non-convex, non-smooth and non-Lipschitz, the recovery
guarantees in [45]-[47] are naturally based on the global
optimal solution, but finding it is in fact very difficult and
not guaranteed. To the best of our knowledge, our recovery
guarantee analysis is the first one for the solution generated
by associated algorithms, not for the global optima.

D. Complexity Analysis

For the DTNM problem (6), the per-iteration cost of Al-
gorithm 1 is dominated by performing matrix multiplication
operators in (14), (15) and (20), and their complexity is
O(mnd). Thus, the per-iteration complexity of Algorithm 1 is
O(mnd) (usually d < min(m,n)). For the DTNMC problem
(10), the complexity of performing SVD and some multipli-
cation operators is O(mnd+m?2d). The complexity analysis
shows that our algorithms significantly reduce the computa-
tional cost compared with Schatten quasi-norm minimization
algorithms [3], [21], [26]. Thus, in practice our method is fast
and scales well to handle large-scale problems.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our DTNM method by compar-
ing with several TNM methods, the SRMF method!, and one
SNM method. Moreover, we also evaluate the effectiveness
and efficiency of our DTNM and DTNMC methods for social
recommendation tasks on real-world problems. All experi-
ments were performed on an Intel Xeon E7-4830V2 2.20GHz
CPU with 64G RAM.

A. Model Comparison for Matrix Completion

Synthetic ground-truth matrices Xo € R™*"™ with rank r
are generated by the procedure in [6], [30]. The experiments
were conducted on noisy matrices with the noise factor, nf =
0.05 or 0.1, where the observed subset is corrupted by i.i.d.
standard Gaussian random variables as in [6]. Only 1.5% or
3.0% entries are sampled uniformly at random as observed
data. The size of matrices is 1,000 x 1,000, and their rank
is set to 5. We use the relative standard error (RSE:= || X —
Xoll7/|IXol||7) as the evaluation measure, where X denotes
the recovered matrix. The regularization parameter is set to

A=+/max(m,n).

'For fair comparison, the SRMF problem (4) is solved by the proposed
ADMM algorithm, which, as well as its convergence analysis, is provided in
the Supplementary Material.
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We compared DTNM with APG [2], ALT [51], SRMF, and
IRucLq [3]. The average RSE results over 20 independent runs
of APG, ALT, SRMF, IRucLq (p€{0.1,0.2,...,1}) and our
DTNM method on noisy random matrices are shown in Fig.
1, from which we can observe that:

e As a scalable alternative to the trace norm, SRMF with
relatively small ranks (e.g., the rank parameter is set
to [1.25r] as in DTNM) often obtains more accurate
solutions than the trace norm counterparts, APG and ALT.

o If p is chosen from the range of {0.5,0.6,0.7}, IRucLq
usually outperforms APG, ALT and SRMF in terms
of RSE. Otherwise, IRucLq sometimes performs much
worse than the other methods, especially p=0.1.

o The RSE of our DTNM method under all of these settings
is consistently much better than that of the other methods.
This result clearly justifies the usefulness of the proposed
double trace norm penalty.

We also conducted some experiments on noisy matrices of
size 100x100 with nf =0.1, and report the RSE results of all
algorithms with different sampling rates (SR) in Fig. 2(a). We
can see that the performance of all the methods becomes worse
as SR decreases. DTNM outperforms the other methods in all
the settings and has much greater advantage over them in cases
when SR is relatively small, e.g., 5%. Moreover, we report the
running time as the size of noisy random matrices increases, as
shown in Fig. 2(b), where SR is set to 2.5%. The running time
of IRucLq increases dramatically when the size of matrices
increases, and it could not produce results within 48 hours
when the size of matrices is 10* x 10%. In contrast, DTNM
is much faster than the other methods. Especially, DTNM can
be 500x faster than IRucLq. This further justifies that DTNM
has very good scalability and can address large-scale problems.
As APG uses the PROPACK package [8] to compute a partial
SVD, it sometimes runs slightly faster than ALT.

B. Collaborative Filtering

In order to evaluate our method for collaborative filtering
tasks, some matrix completion experiments were conducted
on the four data sets’: MovieLens100K with 100K ratings,
MovieLens1M with 1M ratings, MovieLensl1OM with 10M
ratings and MovieLens20M with 20M ratings, as shown in
the Supplementary Material. We randomly choose 90% as
the training set and the remaining as the testing set, and
report the average results obtained over 10 independent runs.
Besides those methods used above, we also compared our
method with the trace norm solver, IMPUTE [4], one of the
fastest methods, LMaFit [14], and two manifold optimization
methods: OptSpace [12] and RTRMC [13]. The stopping
tolerance for all algorithms is set to e =104, and the settings
for regularization parameters of different algorithms are listed
in the Supplementary Material.

We use the root mean squared error (RMSE) as the evalua-
tion measure, and report the average testing RMSE results of
all those methods with ranks varying from 5 to 15 in Fig. 3.
Moreover, we also report more experimental results of all those

Zhttp://www.grouplens.org/node/73

1063-6706 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TFUZZ.2017.2760287, IEEE

Transactions on Fuzzy Systems

IEEE TRANSACTIONS ON FUZZY SYSTEMS

—6— IRucLq
qu qu 04r |- DTNM
x 06 x g3

0.4 0.2

0.8‘ axm

w 0.6

0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8
p p

(a) 1.5% SR and nf=0.10 (b) 3.0% SR and nf=0.10

(c) 1.5% SR and nf=0.05

(d) 3.0% SR and nf=0.05

Fig. 1. The RSE results of APG [2], ALT [51], SRMF, IRucLq [3], and our DTNM method on noisy matrices of size 1,000 x 1, 000.
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Fig. 3. Evolution of the testing RMSE of different methods with varying rank
parameters (from 5 to 15).

methods on the four data sets in the Supplementary Material.
From all the results, we can observe that:

1) The matrix factorization methods, RTRMC, LMaFit,
SRMF and DTNM, except OptSpace, significantly out-
perform the trace norm solvers including APG, IMPUTE
and ALT in terms of RMSE, especially on the two larger
datasets, as shown in Figs. 3(c) and 3(d).

2) In most cases, the sophisticated matrix factorization meth-
ods, except OptSpace, outperform LMaFit without any

regularization term. This suggests that those regularized
models can effectively alleviate over-fitting problems.

3) The testing RMSE of DTNM varies only slightly when
the rank parameter increases. In contrast, the testing
RMSE of all the other matrix factorization methods
changes dramatically. This further means that DTNM per-
forms more robust than them in terms of this parameter.

4) We reported the best results of IRucLq with all choices
of p in {0.1,...,1} in Fig. 3. IRucLq performs much
better than the three trace norm solvers. However, IRucLq
could not run on the two largest datasets due to runtime
exceptions, and is more than 50 times slower than DTNM.

5) Our DTNM method under all of the settings consistently
outperforms the other methods in terms of RMSE. This
confirms that our double trace norm regularized model
can provide a good estimation of a low-rank matrix, even
though from only a few observations.

C. Fuzzy Recommender System

Finally, we conducted some experiments to investigate the
effects of social context, and chose the two real-world data
sets® used in [17], Epinions and Ciao, to evaluate DTNMC.
Some statistics of the two data sets are given in the Supplemen-
tary Material. The users in both data sets rated products with
scores from 1 to 5, and they also established social relations
with others. For each data set, we chose 50%, 70% or 90%
as training data and the remaining as testing data.

We compared DTNMC with several state-of-the-art recom-
mender methods: PMF [52], SoRec [15], SoReg [16] and
LOCABAL [17], where PMF only utilizes rating information.
Both SoRec and SoReg only exploit the social network in-
formation, while DTNMC and LOCABAL can exploit both
the user reputation and social network information. The ex-
perimental results are reported in Table II, from which we
observe that DTNMC and LOCABAL consistently outperform
the other methods. This further confirms that both the social
network and user reputation information can improve the
recommender performance. More details on the effects of both
types of social information on the performance of DTNMC
and LOCABAL are discussed as follows.

We investigate the effects of both the social network (S)
and the user reputation (R) information on DTNMC and
LOCABAL. Note that DTNMC/S/R (i.e., DTNM) and LOCA-
BAL/S/R denote DTNMC and LOCABAL without both the

3http://www.cse.msu.edu/~tangjili/trust.html
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TABLE II
COMPARISON OF DIFFERENT METHODS ON EPINIONS AND CIAO.

Databases Training set PMF SoRec SoReg LOCABAL DTNMC
50% 1.1736 1.1366 1.1285 1.1083 1.1037
Epinions 70% 1.1482 1.1137 1.1090 1.0857 1.0726
90% 1.1381 1.1025 1.0967 1.0746 1.0653
50% 1.1925 1.1579 1.1473 1.1270 1.1185
Ciao 70% 1.1834 1.1485 1.1272 1.1074 1.1021
90% 1.1796 1.1383 1.1164 1.1002 1.0912
1.2
3 3
=3 =
o @
I L OCABAL/S/IR I DTNM
[ LOCABAL/R [0 DTNMC/R
[C_1LOCABAL/S [C_—1DTNMC/S
I L OCABAL I DTNMC
50% 70% 90% 50% 70% 90%

Fig. 4. The impact of the social network and user reputation information on
LOCABAL (left) and DTNMC (right).

social network and user reputation information; DTNMC/R
and LOCABAL/R denote DTNMC and LOCABAL without
user reputation information; DTNMC/S and LOCABAL/S
denote DTNMC and LOCABAL without social network in-
formation, respectively. Since we have similar observations on
the Ciao date set, we only show the experimental results on the
Epinions date set in Fig. 4. It is clear that both social network
and user reputation information can help improve the accuracy
of recommender systems. Moreover, DTNMC consistently
outperforms LOCABAL in all these settings, which implies
that DTNMC can make better use of both user reputation and
social network information than LOCABAL.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel fuzzy double trace norm
minimization (DTNM) method for LRMC problems. We first
presented a double trace norm minimization model, which is
in essence a tractable Schatten-1/2 quasi-norm problem. In
our model, we updated two much smaller factor matrices to
replace the repetitively calculating SVD of a larger matrix as
in Schatten norm minimization methods. Therefore, it can be
several orders of magnitude faster, and scales well to handle
large-scale problems. Then we also extended our model to
incorporate the social contextual information, such as the user
social relationship and user reputation information, for social
recommendation. Finally, we developed two efficient ADMM
algorithms for solving the proposed problems. Extensive re-
sults on both synthetic and real-world data sets verified that our
double trace norm penalty performs better than both bilinear
spectral regularization and trace norm penalty.

For future work, we are interested in exploring ways to
regularize our model with other auxiliary information as
in [7], [53], such as semantic information contained in social
network [19] and leverage scores [36]. Moreover, our method
can be extended to various robust low-rank tensor recovery
and completion problems as in [54].
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