
Accurate Tensor Decomposition with Simultaneous
Rank Approximation for Surveillance Videos
1st Ramin Goudarzi Karim

School of Business, Entrepreneurship, and CIS
Stillman College
Tuscaloosa, AL

rkarim@stillman.edu

2nd Guimu Guo
Department of Computer Science

University of Alabama at Birmingham
Birmingham, AL

guimuguo@uab.edu

3rd Da Yan
Department of Computer Science

University of Alabama at Birmingham
Birmingham, AL
yanda@uab.edu

4th Carmeliza Navasca
Department of Mathematics

University of Alabama at Birmingham
Birmingham, AL

cnavasca@uab.edu

Abstract—Canonical polyadic (CP) decomposition of a tensor
is a basic operation in a lot of applications such as data mining
and video foreground/background separation. However, existing
algorithms for CP decomposition require users to provide a rank
of the target tensor data as part of the input and finding the rank
of a tensor is an NP-hard problem. Currently, to perform CP
decomposition, users are required to make an informed guess of
a proper tensor rank based on the data at hand, and the result
may still be suboptimal. In this paper, we propose to conduct CP
decomposition and tensor rank approximation together, so that
users do not have to provide the proper rank beforehand, and
the decomposition algorithm will find the proper rank and return
a high-quality result. We formulate an optimization problem
with an objective function consisting of a least-squares Tikhonov
regularization and a sparse `1-regularization term. We also test
its effectiveness over real applications with moving object videos.

Index Terms—H.8 - Speech, Image and Video Processing:
Computer Vision, Image and Video Analysis

I. INTRODUCTION

Canonical polyadic (CP) decomposition of a tensor is
widely used in many real applications. For example, in neu-
roscience, data from EEG and fMRI usually naturally fit into
a multi-way array and thus CP decomposition is a popular
tool for analyzing them [8]. As another example, In data
mining and machine learning, CP decomposition has been
used for discussion detanglement in online chat rooms [1] and
compressing deep learning models [2]. Albeit a fundamental
operation, CP decomposition requires users to provide a rank
of the target tensor data as part of the input.

Moreover, (Challenge I) finding the rank of tensors is NP-
hard [11]. Currently, to perform CP decomposition, users
are required to make an informed guess of a proper tensor
rank based on the data at hand, and the result may still be
suboptimal (Challenge II): [7] showed that tensors can be ill-
posed and failed to have their best low-rank approximations.
For example, there exists a tensor space in which no rank-3

tensor has an optimal rank-2 approximation [7]. As a result,
an overestimated rank is usually provided by users.

In this paper, we tackle the problem of constructing CP
decomposition and tensor rank approximation together. Our
new formulation addresses the 2 challenges mentioned. Our
main contributions are summarized as follows:

• We propose the problem of CP decomposition with
simultaneous rank approximation, which addresses Chal-
lenges I and II described above.

• We formulate the CP decomposition problem with
Tikhonov regularization to avoid ill-posed decomposition
outputs and to help the convergence, and with an `1-
regularization term for effective rank approximation.

• We design a block-coordinate descent algorithm to solve
the new decomposition formulation, which uses a proxi-
mal alternating minimization technique for the rank and
an alternating least-squares for the decomposition.

• We test its effectiveness in rank approximation and the
quality of decomposition over real applications with
moving object videos.

II. BACKGROUND AND RELATED WORK

A. Tensor Notations
An N -th order tensor X ∈ RI1×I2×···×IN is a multidi-

mensional array with entries xi1i2···iN for ik ∈ {1, . . . , Ik}
where k ∈ 1, . . . , N . In particular, a third-order tensor
X ∈ RI×J×K is a multidimensional array with entries xijk
for i ∈ {1, . . . , I}, j ∈ {1, . . . , J} and k ∈ {1, . . . ,K}.

The Kronecker product of two vectors a ∈ RI and b ∈ RJ
is denoted by a⊗ b ∈ RIJ :

a⊗ b =
(
a1b

T , . . . , aIb
T
)T
.

The Khatri-Rao product of two matrices A ∈ RI×J and
B ∈ RK×J is defined as

A�B = (a1 ⊗ b1, . . . ,aJ ⊗ bJ).



The outer product of three vectors a ∈ RI , b ∈ RJ , c ∈ RK
is a third-order tensor X = a ◦ b ◦ c with the entries xijk =
aibjck.
B. CP Decomposition

In 1927, Hitchcock [12], [13] proposed the idea of the
polyadic form of a tensor, i.e., expressing a tensor as the sum
of a finite number of rank-one tensors. Today, this decomposi-
tion is called the canonical polyadic (CP), aka. CANDECOMP
or PARAFAC. It is a basic operation in data mining and
machine learning, and has been extensively applied to address
various problems in science and engineering (see Introduction
for some examples). For notation simplicity, we focus on third-
order tensor in our presentation but our approach generalizes
to higher-order tensors. Specifically, the CP decomposition of
a given third-order tensor X ∈ RI×J×K factorizes it to a sum
of rank-one tensors shown as follows:

X ≈
R∑
r=1

αr(ar ◦ br ◦ cr) , X̂ , (1)

where R is a user-provided rank parameter for X . For sim-
plicity, we use the notation [A,B,C,α]R to represent the sum
on the right hand side of Equation (1), where A ∈ RI×R,
B ∈ RJ×R and C ∈ RK×R are called factor matrices given
below:

A = [a1, . . . ,aR], B = [b1, . . . ,bR], C = [c1, . . . , cR].

Thus, we have X̂ = [A,B,C,α]R.
The CP decomposition problem can be formulated as an

optimization problem. Given a rank parameter R, the goal is
to find vectors ar,br, cr, such that the distance between the
tensor X and the sum of the outer products of ar,br, cr is
minimized. Frobenius norm ‖.‖F is usually used to measure
this distance, or equivalently, for the residual tensor (X − X̂ )
we minimize the sum of its entries squared:

min
A,B,C,α

1

2
‖X − [A,B,C,α]R‖2F (2)

Let us rewrite the objective of Equation (2) as f(.) below:

f(A,B,C,α) =
1

2
‖X − [A,B,C,α]‖2F (3)

The optimization problem of minimizing f(.) is non-
convex, but if we fix three variables among A, B, C and α, and
find the value of the other variable to minimize f(.), the prob-
lem is actually a linear least-squares problem. Independently
proposed by [6] and [10], Alternating Least-Squares (ALS)
alternates among these least-squares problem to update one
variable at a time until some convergence criterion is satisfied.
ALS is the most popular method for CP decomposition thanks
to its robustness and ease of implementation.

However, ALS can converge very slowly [16], and the tensor
rank R should be provided by users. This paper addresses both
problems.
C. Rank Approximation

The problem of finding the rank of a tensor can be formu-
lated as a constrained optimization problem.

min
α
‖α‖0 s.t. X = [A,B,C,α]R

where ‖α‖0 is the `0-norm of α, i.e., the number of non-zero
entries in α. Since `0-optimization problem is non-convex and
difficult to solve, [4] proposed to use a solution to the convex
`1-optimization problem as a good approximation, which is
widely used in areas such as compressive sensing [5], [9].

We thus write the rank approximation problem as:

min
α
‖α‖1 s.t. X = [A,B,C,α]R

In order to obtain both a CP decomposition of the given
tensor X as well as its rank approximation, the rank approxi-
mation problem can be formulated as follow:

min
A,B,C,α

1

2
‖X − [A,B,C,α]‖2F + γ‖α‖1 (4)

where γ > 0 is the regularization parameter. In machine learn-
ing, `1-regularization (or lasso) is well-known to encourage the
sparsity of optimization variable α.

There are several works on low rank tensor decomposition
and sparsity; for example, see [15], [19], [20]. However, most
of the work in the literature are in the Tucker (HOSVD)
decompostion. In the paper of [19], a convex optimization is
formulated by using the structured Schatten norm regulariza-
tion using the Tucker decomposition.

III. PROBLEM FORMULATION

Recall that the objective function in Equation (4) is a
composition of a smooth and non-smooth functions. Moreover,
it is known that CP decomposition is invariant to scaling
and permutation of factor matrices. In order to overcome the
scaling indeterminacy, we add a Tikhonov-type regularization
term [14] to our objective function.

Recall f from Equation (3). We also define g as follow to
simplify notations in our later discussion:

g(α) = γ‖α‖1. (5)

Then our rank approximation problem can be formulated as

min
A,B,C,α

f(A,B,C,α) +
λ

2
(‖A‖2F + ‖B‖2F + ‖C‖2F ) + g(α).

(6)
For ease of presentation, we further denote the objec-

tive function in Equation (6) by Ψ(A,B,C,α), and define
ω = (A,B,C,α). For simplicity, when B,C,α are fixed, we
represent f(ω) by f(A) and Ψ(ω) by Ψ(A). We define f(B),
f(C), f(α) and Ψ(B), Ψ(C), Ψ(α) similarly.

IV. ALGORITHM

In this section, we propose a block coordinate descent
algorithm for solving the problem of Equation (6). We consider
four (blocks of) variables A,B,C and α. In particular, at each
inner iteration, we solve the following minimization problems,
where superscript k denotes the iteration number (e.g., Ak

denotes the value of A after Iteration k):

Ak+1 = argminA{f(A,Bk, Ck,αk) +
λ

2
‖A‖2F }, (7)

Bk+1 = argminB{f(Ak+1, B,Ck,αk) +
λ

2
‖B‖2F }, (8)



Ck+1 = argminA{f(Ak+1, Bk+1, C,αk) +
λ

2
‖C‖2F }, (9)

and

αk+1 = argminα{Lkβf (Ak+1, Bk+1, Ck+1,α) + g(α)},
(10)

where Lkβf (α) represents the proximal linearization [3] of
f(α) given by the equation below; note that here we omitted
Ak+1, Bk+1 and Ck+1 that are fixed in Lkβf (.) and f(.) for
notation simplicity.

Lkβf (α) = 〈α−αk,∇αf(αk)〉+
1

2β
‖α−αk‖22, (11)

and β > 0 is a fixed step size parameter, and 〈·, ·〉 is the inner
product operation.

Since each of the minimization problems in Equations (7)-
(10) is strictly convex, A,B,C,α are uniquely determined at
each iteration.

Updating A, B and C. The subproblems in Equations (7)-(9)
are standard linear least-squares problems with an additional
Tikhonov regularization term. Without loss of generality, con-
sider the subproblem of Equation (7).

Taking the objective’s gradient with respective to A, we
have:

∇Af(A,Bk, Ck,αk) + λA,

Setting the gradient to 0, we obtain:

A(Ek(Ek)T + λI) = X(1)(E
k)T , (12)

where Ek = diag(αk)(Ck �Bk)T . Similarly, we can obtain

B(F k(F k)T + λI) = X(2)(F
k)T , (13)

where F k = diag(αk)(Ck �Ak+1)T , and

C(Gk(Gk)T + λI) = X(3)(G
k)T , (14)

where Gk = diag(αk)(Bk+1 �Ak+1)T .
Since the objective functions in Equations (7)-(9) are strictly

convex, the first order optimality condition is sufficient for a
point to be minimum. In other words, the exact solutions are
given by Equations (12)-(14).

Updating α. To update α in Equation (10), we need the
proximal operator [17] as defined below.

Definition 4.1 (proximal operator): Let g: Rn → R be
a lower semi-continuous convex function, then the proximal
operator of g with step size parameter β > 0 is defined as
follow:

proxβg(y) = argminx{g(x) +
1

2β
‖x− y‖22}. (15)

Using this notation, Equation (10) is equivalent to

αk+1 = proxβg(α
k − β∇αf(αk)), (16)

Note that the proximal operator in Equation (15) is well-
defined because the function g(α) is continuous and convex.

Now let us consider ∇αf(α) in Equation (16). Note that

vec([A,B,C,α]R) =

R∑
r=1

αrvec(ar ◦ br ◦ cr) = Mα,

where M ∈ RIJK×R is the matrix with columns (cr ⊗ br ⊗
ar). Note that M is computed from A, B and C. Given the
definition of M , we can rewrite the objective function f(α)
defined in Equation (3) as follows:

f(A,B,C,α) =
1

2
‖vec(X )−Mα‖22 (17)

It is easy to calculate the gradient of Equation (17) with
respect to α:

∇αf(A,B,C,α) = MT (Mα− vec(X )) (18)

This implies the Lipschitz continuity of the gradient of f(.)
with respect to α, and we have the Lipschitz constant Qα =
‖MTM‖F (assuming A,B and C fixed in f(.)) such that

|∇αf(α1)−∇αf(α2)| ≤ Qα‖α1 −α2‖2. (19)

which can be easily shown as follows:

‖∇αf(α1)−∇αf(α2)‖F ≤ ‖MTM‖F ‖α1 −α2‖2.

Now that we have defined M and Qα, using proximal
algorithm, we can update α as in Equation (16) using the soft
thresholding operation as depicted in Section 6.5.2 of [17] for
`1-norm. Specifically, let us define:

y(α) = α− β∇αf(α), (20)

then Equation (16) becomes:

αk+1 = proxβg(y(αk)), (21)

and since g(α) = γ‖α‖1 = γL1(α), we have αk+1 =
proxβγL1(y(αk)) by Equation (21). Using soft thresholding
for ‖.‖1 we obtain the following update equation:

αk+1 =


y(αk)− βγ y(αk) > βγ,

0 |y(αk)| ≤ βγ,
y(αk) + βγ y(αk) < −βγ.

Note that here y(αk) can be computed as follows using
Equations (20) and (18):

y(α) = α− β(MT (Mα− vec(X ))). (22)

The Overall Algorithm. Putting things together, we obtain a
block coordinate algorithm that iteratively updates A, B, C
and α as shown in Algorithm 1. The algorithm only requires
users to provide a rank upper bound R and will automatically
reduce it to R̂ when it returns.

One problem remains: while the objective functions in
Equations (7)-(10) are convex and so each subproblem is
guaranteed to converge to optimum, this does not directly
imply that the block coordinate algorithm of Algorithm 1
converges to a stationary point (or local optimum) for any
initial point, which is called “global” convergence [18].



Algorithm 1 The Block Coordinate Descent Algorithm
Input:

A third-order tensor X , an upper bound R of rank(X ),
Tikhonov regularization parameter λ > 0,
`1-regularization parameter γ > 0,
and the fixed step size β.

Output:
An approximated tensor X̂ with an estimated rank R̂.

1: Given initial guess X 0 = [A0, B0, C0,α0]R
2: while convergence criterion is not met do
3: {Update A:}
4: E ← diag(α)(C �B)T

5: A← (X(1)E)/(EET + λI)
6: {Update B:}
7: F ← diag(α)(C �A)T

8: B ← (X(2)F )/(FFT + λI)
9: {Update C:}

10: G← diag(α)(B �A)T

11: C ← (X(3)G)/(GGT + λI)
12: {Update α:}
13: for r = 1 to R do
14: M [:, r]← vec(ar ◦ br ◦ cr)
15: end for
16: y ← α− β(MT (Mα− vec(X )))
17: for r = 1 to R do

18: α[r]←


y[r]− βγ y[r] > βγ

0 |y[r]| ≤ βγ
y[r] + βγ y[r] < −βγ

19: end for
20: end while
21: R̂← the number of non-zero elements of α
22: Make A, B, C and α compact by removing from them

those ar, br, cr and αr where αr = 0
23: Tensor X̂ can be constructed with factor matrices A,B,C

and coefficients α.

We set βk = 0.99/Qkα in each iteration k in order to ensure
global convergence. Note that we set step size βk to be close
to its upper bound to allow faster convergence, and this is step
size is also larger than 1/Qα.

In Algorithm 1, we should actually compute β from M right
after Line 15. We were treating β as fixed in order to simplify
the notation in our presentation.

V. EXPERIMENTS

In this section, we test our algorithm on tensors with
different rank and dimensions. We find that setting the `1-
regularization parameter γ to be large promotes sparsity of
α but does not compromise residual error ‖X − X̂‖F for
a moderate-sized tensor (i.e., I, J,K does not have to be
large), and thus we set γ = 50 by default. Among other
parameters, the Tikhonov regularization parameter λ = 10−2

and the step size βk = 0.99/Qkα in each iteration k. We
use these hyperparameter values since they work well in all

TABLE I
RANK APPROXIMATION

Size of Tensor
I, J,K = 5 I, J,K = 7 I, J,K = 10

Actual Rank 5 8 10
Upper bound 10 15 20

Mean of Estimated Ranks 5 8.8 14.25
Std of Estimated Ranks 0 1.06 2.38

Fig. 1. Separating Vehicle from the Highway Background

our cases, though they can be further tuned to achieve better
decomposition quality and rank approximation.
A. Quality of Tensor Rank Estimate

We randomly generate synthetic cubic tensors of a specific
rank R by summing R random rank-one tensors.

Table I shows the results for three experimental settings with
different tensor dimensions and ranks:

• A 5×5×5 tensor generated with 5 rank-one components;
• A 7×7×7 tensor generated with 8 rank-one components;
• A 10 × 10 × 10 tensor generated with 10 rank-one

components.

B. Experiments on Real Videos and Images

We test the effectiveness of our algorithm in two real
applications. The first one is video foreground/background
seperation, where we stack grayscale video frames into a 3D
tensor, and perform CP decomposition over it. Since objects
moving in the foreground are different frame by frame, the
CP components should mainly capture the shared background
signal. Once we reconstruct the background tensor X̂ from
the components, the moving objects in the foreground can
be obtained by subtracting each original video frame by
the corresponding background frame. This allows us to use
CP decomposition to implement video foreground/background
separation (into 2 separate videos).

We use a video about moving vehicles on a highway with 51
frames of size 48×48, giving a tensor of size 48×48×51. After
running our algorithm, the CP decomposition gets an estimated
rank of 23, i.e., with 23 components which is much smaller
than the dimensions (i.e., 48 and 51), demonstrating that the
tensor is compactly approximated. Figure 1 illustrates the qual-
ity of foreground/background separation: Columns 1, 2 and 3
show the original frames, the reconstructed background, and
the foreground (moving objects), respectively; and Rows 1,
2 and 3 refer to 3 sampled frames to display: Frames 11, 16
and 49. Note that moving vehicles are properly separated from
background.



Fig. 2. Separating a Car from the Room Background

(a) Original Pepper Image (b) ALS Reconstructed (c) Our Reconstructed

(d) Original Lena Image (e) ALS Reconstructed (f) Our Reconstructed

Fig. 3. Image Compression and Reconstruction

As another video example, Figure 2 is about a toy car
moving in a room, and the goal is to separate the car from the
background. The video-frame tensor is of size 240×320×500
(i.e., 500 frames each of size 240 × 320). After running our
algorithm, the CP decomposition gets an estimated rank of
90. In Figure 2, Columns 1 and 2 show the original frames
and the reconstructed background, respectively; and Rows 1,
2 and 3 refer to 3 sampled frames to display: Frames 25, 30
and 40. We can see that the moving car is properly removed
from the background.

Finally, we consider image compression. Obviously, with
rank approximation, our algorithm obtains a more compact
representation of an image than the conventional CP decompo-
sition since components with αi being almost 0 are eliminated.
It remains to see if this benefit is a result of trading off image
quality after decompression.

To see this, Figure 3 shows two images as well as the
reconstructed ones compressed by the conventional ALS and
by our algorithm. The pepper image is 200× 200× 3 and the
estimated rank is 90, while the airplane one is 512×512×3 and
the estimated rank is 200. We can see that our reconstructed
image is similar to that from the conventional ALS.

VI. CONCLUSION
This paper proposed a new block coordinate descent al-

gorithm that sparsifies and thus reduces the number of com-
ponents in CP decomposition. This algorithm alleviates users
burden to guess a proper tensor rank before the decomposition,
and obtains an accurate estimate of the tensor rank. We tested
our algorithm over real video and image data; the results verify
that our approach leads to both an accurate rank estimate and
high-quality components for tensor reconstruction.
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[1] E. Acar, S. A. Çamtepe, M. S. Krishnamoorthy, and B. Yener. Modeling
and multiway analysis of chatroom tensors. In International Conference
on Intelligence and Security Informatics, pages 256–268. Springer, 2005.

[2] M. Astrid and S. Lee. Cp-decomposition with tensor power method for
convolutional neural networks compression. In 2017 IEEE International
Conference on Big Data and Smart Computing, BigComp 2017, Jeju
Island, South Korea, February 13-16, 2017, pages 115–118, 2017.

[3] J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Math. Program.,
146(1-2):459–494, 2014.

[4] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans.
Information Theory, 51(12):4203–4215, 2005.

[5] E. J. Candes, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by
reweighted l1 minimization. Journal of Fourier analysis and applica-
tions, 14(5-6):877–905, 2008.

[6] J. D. Carroll and J.-J. Chang. Analysis of individual differences in
multidimensional scaling via an n-way generalization of “eckart-young”
decomposition. Psychometrika, 35(3):283–319, 1970.

[7] V. de Silva and L. Lim. Tensor rank and the ill-posedness of the best
low-rank approximation problem. SIAM J. Matrix Analysis Applications,
30(3):1084–1127, 2008.

[8] M. De Vos, L. De Lathauwer, B. Vanrumste, S. Van Huffel, and
W. Van Paesschen. Canonical decomposition of ictal scalp eeg and accu-
rate source localisation: Principles and simulation study. Computational
intelligence and neuroscience, 2007, 2007.

[9] S. Foucart and H. Rauhut. A mathematical introduction to compressive
sensing. Bull. Am. Math, 54:151–165, 2017.

[10] R. A. Harshman et al. Foundations of the parafac procedure: Models
and conditions for an” explanatory” multimodal factor analysis. 1970.

[11] C. J. Hillar and L. Lim. Most tensor problems are np-hard. J. ACM,
60(6):45:1–45:39, 2013.

[12] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of
products. Journal of Mathematics and Physics, 6(1-4):164–189, 1927.

[13] F. L. Hitchcock. Multiple invariants and generalized rank of a p-way
matrix or tensor. Journal of Mathematics and Physics, 7(1-4):39–79,
1928.

[14] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

[15] D. Kressner, M. Steinlechner, and B. Vandereycken. Low-rank tensor
completion by riemannian optimization. BIT Numerical Mathematics,
54:447–468, 2014.

[16] N. Li, S. Kindermann, and C. Navasca. Some convergence results on the
regularized alternating least-squares method for tensor decomposition.
Linear Algebra and its Applications, 438(2):796–812, 2013.

[17] N. Parikh and S. P. Boyd. Proximal algorithms. Foundations and Trends
in Optimization, 1(3):127–239, 2014.

[18] B. K. Sriperumbudur and G. R. G. Lanckriet. On the convergence of
the concave-convex procedure. In NIPS, pages 1759–1767, 2009.

[19] R. Tomioka and T. Suzuki. Convex tensor decomposition via structured
schatten norm regularization. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 26, pages 1331–1339. Curran Associates,
Inc., 2013.

[20] Q. Yao, J. T.-Y. Kwok, and B. Han. Efficient nonconvex regularized
tensor completion with structure-aware proximal iterations. In PMLR,
volume 97, pages 7035–7044, 2019.


